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Abstract Determining if the mechanically weak materials of the upper crust are products of early explosive
volcanism or generated by modification of extensive effusive lava flows is important for understanding the
geologic and thermal history of Mars. We examined 75 recently identified preserved ancient volcanoes, whose
eruption styles are representative of early volcanism. We describe a unique knobby terrain that is associated
with 17 of these volcanoes. This newly identified terrain is characterized by a combination of high-resolution
images and thermophysical and thermal infrared hyperspectral data. The morphology characteristics of
these knobby terrains are similar to terrestrial eroded ignimbrites, and the thermophysical properties
indicate that they are composed of unconsolidated fine-grained materials. The spectral analysis indicates
that they experienced some aqueous alteration. We explain the knobby terrain associated with these
ancient volcanoes as the products of an early explosive volcanic phase in Martian history, followed by
subsequent modification of these deposits.

1. Introduction

It is critical to understand the physical nature and source of building materials of the upper Martian crust
to gain insight into early Martian volcanism. These materials have been recognized as mechanically weak
[Schultz, 2002; Stewart and Valiant, 2006]. A popular view is that effusive volcanism was dominant in the early
history of Mars, and subsequent impact events have generated a highly fractured megaregolith from
extensive lava flows [e.g., McEwen et al., 1999]. An alternate hypothesis is that mechanically weak materials
were mainly the products of extensive explosive volcanism and were subsequently modified by geologic
processes [e.g., Bandfield et al., 2013]. Observations of ancient volcanic features can provide insights into the
dominant early eruption style, but most ancient Martian volcanoes were buried by lava from later volcanism or
severely modified by subsequent geologic processes. Several ancient central volcanoes located in the Circum-
Hellas [Williams et al., 2009] and Arabia Terra [Michalski and Bleacher, 2013] show strong evidence for explosive
eruptions. Recently, 75 globally distributed, preserved ancient volcanoes have been identified by Xiao et al.,
[2012], and they are among the oldest eruption centers identified on the surface of Mars. These ancient
volcanoes have been inactive for themajority ofMartian geologic history, and they preserve clues of the style of
early global volcanic eruption. Here we have identified and characterized knobby terrains associated with 17
out of 75 ancient volcanoes with high-spatial-resolution visible images and thermophysical and thermal
infrared hyperspectral data. The best explanation for these features is that they are the eroded remnants of
pyroclastic materials, which supports a mechanism of dominant early explosive volcanism on Mars.

2. Methods

We used imaging data from the Thermal Emission Imaging System (THEMIS: ~100m/pixel) [Christensen et al.,
2004] global mosaic [Edwards et al., 2011] and gridded topographic data from the Mars Orbiter Laser Altimeter
(MOLA: 128ppd) [Smith et al., 2001] to show the overall regional context. Local albedo and dust cover index
(DCI) [Ruff and Christensen, 2002] were derived from Thermal Emission Spectrometer (TES: 3 × 6 km2 spatial
resolution) data [Christensen et al., 2001]. We selected 12 high-quality TES spectra (Figure S1 in the supporting
information: ock 5980, ick 1371–1374) with minimum surface air fall dust (DCI> 0.97) and other constraints
similar to the study of Rogers et al. [2007], averaged them, and removed the atmospheric components using a
linear unmixing method [Bandfield et al., 2000a; Smith et al., 2000] to analyze the surface emissivity. We then
deconvolved the spectrum with the mineral library of Rogers and Fergason [2011] between 1301 and 307 cm�1
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to quantitatively determine the
surface mineralogy. In order to
decipher the thermophysical nature
of the materials in these terrains, we
used thermal inertia data derived
from THEMIS nighttime infrared (IR)
data [Fergason et al., 2006]. Finally,
we presented local and detailed
geomorphology using Context Camera
(CTX: ~6m/pixel) [Malin et al., 2007]
and High Resolution Imaging Science
Experiment (HiRISE: ~30 cm/pixel)
images [McEwen et al., 2007].

3. Results

The locations of the knobby terrains
identified with 17 ancient volcanoes
are shown in Figure 1a. All the
occurrences are within the southern
middle latitudes (30–45°S). In this
section, we present detailed
observations of the knobby terrains
on the southern slope of a heavily
modified ancient volcano in Thaumasia
Highlands as an example. This volcano
stands ~3000m above adjacent terrains
(Figure 1b), and it is cut through by a
large rift [Grott et al., 2007]. A crater
retention age of ~3.94Ga [Xiao et al.,
2012] indicates that the surface is

Noachian in age. The slopes of the volcano are incised by channels that vary in width and depth and form a
radial pattern, which may indicate erosion by multiple periods of fluvial activity. The albedos of the
southeastern slopematerials range from 0.17 to 0.19 (Figure 1c), which indicates that thesematerials are slightly
brighter than the dark regions [Christensen et al., 2001] or covered by some amount of air fall dust. However,
the DCI values are between 0.96 and 0.99 (Figure 1d), indicating that the surface is relatively free of air fall
dust [Ruff and Christensen, 2002]. DCI is more reliable than albedo when determining surface dust coverage,
as some features (e.g., the White Rock) with higher albedo have minimum air fall dust [Ruff et al., 2001].

The average atmospherically corrected spectrum (KT) is shown with “Surface Type 2”-like [Bandfield
et al., 2000b] spectral shapes of northern Acidalia (NA) and Solis Planum (SP) [Rogers et al., 2007] in Figure 2a.
The short-wavelength portion of the KT spectrum is an asymmetric “V” shape (Figure 2b), and it is similar
to the spectral shapes of NA and SP between ~8 and 12 μm. The long-wavelength portion of the KT
spectrum is generally similar to its counterpart of the NA and SP spectra, but it has a slight slope toward
longer wavelengths.

Themodel fit andmodeledmineralogy for the KT spectrum are shown in Figure 2b. The fit is generally goodwith
a root-mean-square error of ~0.11%. Feldspar (~36%) is the dominant group of minerals. The high-silica
(montmorillonite: ~25%) group is ~31%, and the pyroxene group is ~19%. The major mineral components of KT
spectrum are similar to the deconvolution results of the NA and SP spectra [Rogers and Christensen, 2007].

The knobby terrain occurs on interchannel slopes, and it has a rough and blocky appearance at CTX resolution
(Figure 3a). The rim and bottom of the channels are much smoother, which indicate that these regions are
covered by air fall dust. The knobby terrains and areas covered with air fall dust also can be distinguished from
thermal inertia data (Figure 3b); the knobby terrain has an elevated thermal inertia varying from ~190 to
210 Jm�2 K�1 s�1/2, while dust-covered channels have lower values of ~120 Jm�2 K�1 s�1/2.

Figure 1. (a) Identified knobby terrains on sinusoidal projected MOLA-
shaded relief [Smith et al., 1999]. The yellow square labels the location
of the volcano in (b). (b) color coded MOLA-gridded elevation (10 times
the vertical exaggeration) over THEMIS day IR mosaic [Edwards et al.,
2011]. A wind rift cut through this ancient volcano (centered at 272.07°E,
37.8°S) and extensive channels are on the slopes. (c) The DCI map [Ruff and
Christensen, 2002] onMOLA-shaded relief. The DCI values (0.96–0.99) indicate
that the slope is relatively free of dust. (d) The TES albedo [Christensen et al.,
2001] on MOLA-shaded relief.
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The individual knobs are relatively dark
toned and are curved near their bases in
a style of erosion shown on the slope of
our example volcano (Figure 4a) and
other ancient volcanoes (Figures 4b and
4c and Table S1 in the supporting
information). Their sharp appearances
seen in HiRISE images are consistent
with the rough surface observed in
CTX images (Figure 3a). Individual knobs
are separated by topographically low
lineations. The lineations are most likely
joints occurring in bedrock. Knobs occur
in clusters with knobs of similar sizes
(Figure 4a), in which larger knobs (~25m
in diameter and ~10m high) occur in
the western half of the image, while
smaller knobs (~5–10m in diameter and
~5m in height) are seen in the eastern
half. What causes knobs to cluster by size
is unknown, but it could be related to
the differences in material properties,
material thickness, or local slope. The
knobby material has a sharp appearance
and maintains steep slopes, indicating
that the material is not loosely
deposited. The knobby terrain in this
study resembles eroded rhyolitic to
dacitic ignimbrites [Temel et al., 1998]
in Cappadocia, Turkey (Figure 4d).

4. Discussion

We suspect that the knobby terrains
are distributed more widely than the
17 ancient volcanoes discussed in this
study. However, it is difficult to analyze
the spatial distribution due to limited
data availability: (1) the 21 volcanoes
described by Xiao et al. [2012] have
partial HiRISE coverage, and (2) the
derivation of thermal inertia data for
surfaces polarward of 45° is challenging

[Fergason et al., 2006]. We suggest that knobby terrains are blocks made of fine-grained pyroclastic materials
based on their morphology and thermophysical properties. The extensive channels on the slope of the volcano
indicate that the materials are relatively easy to erode. The typical sharpness and angularity of the knobs are
more consistent with the fine-grained deposit than with the blocky rock covered with fine-grained materials,
which we would expect to have a smoother, draped-on appearance. The derived thermophysical properties,
namely, the thermal inertia, of the knobby terrains support the geomorphologic evidence. Thermal inertia
represents a material’s resistance to temperature change [Kieffer et al., 1977; Mellon et al., 2000; Fergason et al.,
2006] and can be used to determine particle size by assuming that spherical shape particles are homogeneous in
both size and composition [Presley and Christensen, 1997]. In reality, a qualitative effective particle size can
be inferred from the thermal inertia. Previous studies have distinguished different surfaces with relative effective
particle sizes [Fergason et al., 2006; Edwards et al., 2009; Bandfield et al., 2013]: rock-dominated regions

Figure 2. Thermal IR spectral characteristics and quantitative mineralogy
of the knobby terrain. (a) Averaged and atmospheric corrected TES
spectrum of the knobby terrain (KT), the spectra of northern Acidalia
(NA), and Solis Planum (SP) [Rogers et al., 2007]. (b) Deconvolution of KT
spectrum using the mineral library of Rogers and Fergason [2011]. The
result shows elevated high-silica phase in the materials of the knobby
terrain, which is similar to the modeled mineralogy of the NA and SP
spectra reported by Rogers and Christensen [2007].
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(>~1200 Jm�2 K�1 s�1/2), coarse-grained
materials (~600–1200 Jm�2 K�1 s�1/2), fine-
grained materials (~100–600 Jm�2 K�1 s�1/2),
and dust-covered areas (<~100 Jm�2 K�1 s�1/2).
The knobby terrain is relatively free of air fall dust
while the channels are covered by dust, based
on DCI values and the appearance in HiRISE
scene. Therefore, dust has minimum effects on
the qualitative effective particle size of the knob
materials, which are possibly made of fine-
grained, mechanically weak materials.

The surface spectrum of the knobby terrain
provides additional evidence for the possible
tephra nature of the knobs. As described
above, the spectral shape and deconvolution
results are similar to those of the NA and SP
spectra [Rogers and Christensen, 2007], which
indicate elevated abundance of high-silica
phase in the materials of the knobs. High-silica
phase in TES Surface Type 2-like spectra can be
due to either primary volcanic glass [e.g.,
Christensen et al., 2005] or altered high-silica
phases such as clays and zeolites [Wyatt and
McSween, 2002; Kraft et al., 2003; Michalski
et al., 2005], which were discussed in detail by
Rogers and Christensen [2007]. However, more
recent studies have suggested that the
Surface Type 2-like spectra tend to indicate
the existence of altered minerals [e.g.,
Horgan and Bell, 2012; Salvatore et al., 2014].
It is plausible that the finely particulate
materials of the knobby terrains with or
without a primary volcanic glass reacted
with the fluid incising the channels on the
volcano slopes. The chemical alteration of
explosive volcanic materials has been

predicted by Wilson and Head [2007] and observed by Horgan and Bell [2012]. Our analysis of the
knobby terrains is consistent with this scenario.

We propose a possible formation scenario: (1) a pyroclastic flowwas emplaced on the slopes and adjacent area;
(2) some fluid eroded the pyroclastic deposits preferentially along the preexisting lineations generated by
extensive regional tectonic stress or the lineations were erosional to begin with; (3) wind erosion further
modified these terrains; and (4) later lava flows covered much of the pyroclastic material in the surrounding
area of this volcano, but exposures of knobby terrains were preserved on the slopes.

The knobby terrain identified in this study provides insights to the dominant eruption style of early Martian
history. A brief volcanic history of Mars [Werner, 2009; Carr and Head, 2010; Xiao et al., 2012] is as follows:
numerous small central volcanoes are globally distributed in the Noachian. As the planet cooled, most of the
small volcanoes stopped growing and the central volcanism concentrated in Tharsis, Elysium, and the Circum-
Hellas volcanic provinces. Finally, central volcanism only continued in Tharsis. Large portions of ancient
volcanoes were buried by later volcanic materials, and the unburied ones also suffered subsequent severe
modification [Xiao et al., 2012; Michalski and Bleacher, 2013]. The fine-grained nature of the knobby terrains
observed related to the ancient volcanoes provides a new piece of evidence to suggest dominantly early
explosive volcanism. The ancient volcanoes with knobby terrains may represent the globally distributed
explosive central volcanoes. They could be the potential central source region of explosive volcanic products, as

Figure 3. Local geomorphology and thermophysical characteristics
of the knobby terrain. (a) Tens of channels cut through the volcano’s
slope. The interchannel region looks rough in the CTX image
(ID: B03_010621_1419_XN_38S087W). (b) Color coded thermal
inertia derived from THEMIS nighttime IR data (ID: I26494018) on
the CTX image. The relatively dust-free knobby terrains (green) are
easy to be distinguished from dust cover area (blue).
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predicted by Michalski and Bleacher [2013] and may have contributed large amounts of fine particles to the
upper crust and the widespread layered deposits in equatorial regions.

5. Conclusion

We have identified 17 ancient volcanoes with knobby terrains. Based on geomorphologic, thermophysical,
and spectral observations, we infer these knobs to be the remnants of fine-grained volcanic materials
modified by subsequent erosion and/or tectonism. This supports the notion that explosive volcanismwas the
dominant eruption style for central volcanoes for the early history of Mars.
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